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Critical temperature of Ising films with cubic lattices
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Following the approach recently proposed by Lin, Che, and Xia [Phys. Rev. A 46, 1805 (1992)], we
calculate the critical temperature T, for Ising films with lattice structures other than simple cubic by
means of the variational cumulant expansion (VCE) of the free energy of the spin system. The critical
temperature is derived in terms of the ratio of two successive cumulants to an arbitrary order of accura-
cy. Since the cumulant of any order m can be calculated analytically by a graphic method, analytical ex-
pressions of T, can be derived, in principle, as functions of the number L of spin layers in the film to an
arbitrary order of accuracy in the VCE. We describe the graphic method in great detail in this paper,
and calculate T, up to the fourth-order cumulant for films of body-centered-cubic lattice and to the third
order for films of face-centered-cubic lattice. Our results show that in the limit of L — o, T, approaches
the corresponding bulk value rather quickly with increasing m in both cases.

PACS number(s): 05.70.Jk, 75.10.Hk, 75.40.Cx, 75.70.Ak

I. INTRODUCTION

Recently, a completely different to the calculation of
the critical temperature T, of Ising films has been pro-
posed [1] on the basis of the variational cumulant expan-
sion (VCE). The VCE developed in recent years for dis-
cussions of lattice gauge field models [2-5] has been ex-
tended to treat the Ising model in statistical physics [6,7].
By expanding the free energy in the VCE to an arbitrary
order of accuracy, it is shown in Ref. [1] (to be referred to
as I) that T, is expressed in a limiting form in terms of
the ratio of two successive cumulants which are con-
structed analytically by means of recursion relations de-
rived in Ref. [7]. The formalism is so general that it is
valid for any spin, and any lattice structure. The
geometry of the crystal does not have to be specified ei-
ther. For a uniform spin-1 hypercubic film of (d +1) di-
mension, T, is calculated analytically in I, up to the
fourth-order cumulant, as a function of d and L, where L
stands for the number of spin layers in the hyperfilm.

The procedure of calculation consists of two stages. In
the first, we derive the cumulants from recursion rela-

tions. The lattice structure and crystal geometry are not-

specified and therefore the results are valid in general.
The lattice and geometry are specified in the second stage
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and topologically equivalent terms are summed up by
means of the graph technique. Since many of the compli-
cations are already involved in the first stage, the amount
of work involved in the second is greatly reduced. For
example, there are only six distinct connected diagrams
involved in our calculation of the fourth-order cumulants
for the hypercubic Ising film in [1].

It is found that to the first-order correction, our result
is identical to that of the mean-field theory. This is easily
understood because all the bonds are decoupled in the
first-order cumulant. Bethe’s approximation is found to
be exactly the same as our third-order results only for
L=1, 2, and o, for which Bethe’s assumption of the
mean coordination number [6(L —2)+10]/L is exact.
We believe that by adding more terms in the expansion,
our results are expected to quickly approach those of
the high-temperature series expansion extrapolation
(HTSEE) obtained up to twelfth order in the expansion
series for films up to seven spin layers [8]. Computer
codes with the help of softwares such as Schoonschip [9]
may be developed to calculate T, with much higher accu-
racy.

Due to the rapid development of technology, a great
deal of effort has been devoted to experimental measure-
ments of the critical temperature for films of Ising-like
materials with various lattice structures [10-15]. It is
therefore interesting to calculate T, of Ising films with
different lattice structures. We present in this paper our
theoretical results for films with body-centered-cubic
(bee) and face-centered-cubic (fcc) lattices. Again, analyt-
ic expressions are given for T, as functions of the number
of spin layers in the film and numerical results are plot-
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ted. The corresponding bulk T, values obtained from the
HTSEE [16] are also given for comparison. It is observed
that the first few terms of VCE results converge quickly
toward these values. A more complete calculation in-
cluding higher-order terms is expected to yield rather ac-
curate critical temperature in the limit of L — .

II. REVIEW OF THE THEORY

We consider a spin system with the Hamiltonian

H=— 2 —fisz, : (1)
where s*=—s,—s+1,...,s, J stands for the exchange
energy between the spin pair z and j,u represents the
magnetic moment of a spin, and H; is the inhomogeneous
external field at the lattice site / in the z direction. The
sum is taken over every pair only once. The action S for
the system is defined as
S = — _l- _‘ILS

S (iyj) kBT d j

—SszH BTX 2)

and the corresponding trial action S, for the noninteract-
ing system is
uH,

Ak

1
Soz_z

s i

st (3)

Here &; have been introduced as variation parameters
which, as we shall see later, serve as the order parameters
of our system. The VCE of the free energy up to the or-
der m is given by

o1
> F((S—SO)")C=Weff,m ) 4)

n=1

W= WO—_

where W, represents the free energy of the corresponding
noninteracting system and the symbol ( ). denotes the
cumulant average of the enclosed quantity over the
Boltzmann weight e’

For a uniform spin-1 Ising film in the absence of exter-
nal fields, we have J,j =J, §;=§, s’=+1, and H;=0.
From the analytical properties of the free energy W
corrected to the first order, a conjecture has been pro-
posed in [1] that the critical temperature T, can be deter-
mined to an arbitrary order m of accuracy by locating the
bifurcation point of the mth-order VCE of the free ener-
gy, namely, W .. In other words, T, to the mth-order
cumulant approximation is determined by the condition

2
a7 Wenm(O6)s0=0. 5)
where we have defined the reduced temperature
©_.=kpT,./J. As has been discussed in I, starting from
the first-order cumulant and making use of recursion re-
lations for the cumulants, one can prove by mathematical
induction that Eq. (5) reduces to

Bismony, =L 2 (sm,

=0, (6)
8¢ : 562 o

up to any order m. Equation (6) implies immediately that
T!™ calculated to the mth order in the VCE is given by

2
kBTém);- 1 ng Xm> /_(Xm—1> 7

8¢ £=0
for m =2, where X =k, TS as is defined in Eq. (2) and the
energy is expressed in the unit of J. Hence the critical
temperature for the system is obtained simply by extend-
ing m to infinity, or
T,= lim T/™ . (8)

m-—

III. METHOD OF CALCULATION

The cumulant (X™), can be calculated order by order
from the recursion formula [1]

82 SdInZ, s

(§pF1y, = EB” 8&;8¢; d¢; 8—51_
6InZ, 6§1nZ 8*InZ
42220 200 L 2090 | (sr),
8¢, 8, 85,86
9)

where p is an integer and §;; measures J;; in the unit of
kgT. It is useful to point out that Eq. (9) is still valid in
the presence of a nonzero external field provided that £,
is replaced by x;,=¢;,+uH;/kyzT. For a system of N
spins, the moments are polynomials of N and are related
to cumulants of the same order by the well-known rela-
tion.

(S?).=(the linear term of {S?),) . (10)

In other words, we can extract the cumulant {S”),. and
hence (X?), out from the moment {S?), simply by tak-
ing the term linear in N.

At this point, it may be in order to remark that the cu-
mulants {(S”), found in Eq. (10) are very general in the
sense that the lattice structure and the geometry of the
system are not specified. For example, the lowest two or-
ders of cumulants for the spin-; Ising model with
nearest-neighbor interactions are given by

(D=4 ZBiiewidivn an

(8%, =3 2 [Bii+uBii+ull —yHQ _J’i2+,1 )

+2Bi,i+pBi,i+vyi+yyi+v(l_yiz)] , (12)

where we have defined
y; =tanh§; (13)

and the subscripts i +u and i +v run over all the nearest
neighbors of the lattice site i. Explicit expressions for
higher-order terms are very long and it is not instructive
to write them down completely here. Because all quanti-
ties on the right-hand sides of Eqgs. (11) and (12) depend
explicitly on lattice sites, these equations are generally
good for the calculation of cumulants for inhomogeneous
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Ising systems of various lattice structures with different
geometry.

We are now in the position to sum over the equivalent
terms in Egs. (11) and (12) for uniform Ising films of N,
spin layers. We notice that §;=¢ and B, ; + ,=B with pos-
itive integer i for a uniform spin system. Therefore, Eqgs.
(11) and (12) can be written as

(S1) . =1BN,[LI +ply?, (14)
(82) =1BN, ([L1+p](1—p?)
+2[L1+p, I +vlyA(1—y2)} , (15)

where N, represents the number of lattice sites in each
spin layer and tends to infinity in our present cases. This
infinity does not appear in T, because of cancellation in
X™ and X™ ! according to Eq. (7). The symbol [/,/ +u]
stands for the number of graphs in which two nearest-
neighboring sites are connected by a bond, and these con-
nected graphs are embedded on the lattice site /. Figure
1(a) shows the type of graph we have to sum in evaluating
(S!).. The symbol [I,l+u,l+v] is the number of
graphs of the type shown in Fig. 1(b). Both bonds must
be summed independently over all the nearest neighbor-
ing sites of /. It is noted that the lattice site / itself has to
be summed over all sites in the z direction. Thus, there
are only two types of graphs to be summed up to the
second-order cumulant.

It is now a simple matter to calculate the critical tem-
perature to the second-order cumulant. Inserting the cu-
mulants found from Egs. (14) and (15) into Eq. (7), and
remembering the relation X =k, TS, we find

(L1 +p,l+v]=[LI+p]
(51 +p]

kyT? /7= (16)

At this point, it is important to remark that strictly
speaking, Eq. (7) holds true only for m > 2.
For m =1, Eq. (6) implies that

kpT®/T= ALl+p)—

6LL1+pu,1+v]+3[LI+p I +vtr]
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FIG. 1. Graphs contributing to the first- and second-order
cumulants {S'), and (S?),.

K, TH=2 (x1) / s).| (17)
i 8¢* 88> o) £=0
where we have defined
(So). 2 Eyi - (18)

As has been shown in I, Eq. (17) yields the mean-field re-
sults. With the help of Egs. (14) and (18), we immediately
find from (17) that

kg TV /T =[1L1+p]/11], (19)

where the symbol [/] is simply a sum of “points.” In oth-
er words, [/]=N, which represents the number of lattice
points in the z direction, or the number of spin layers
L =N1 .

Equations (16) and (19) are valid for both bcc and fec
lattices as well as for the simple cubic (sc) lattice. This is,
however, not true in general for higher-order results. As
a matter of fact, an explicit calculation up to the third-
order cumulants yields

{—[L1+u]+[L1+u,l+v]}

for bcc lattices, and

kgTX /7=

2[L1+u]—6[L1 +u,l +v]+3[L1+pu,l +v+q]—

(20)

[Ll+u+v=I+n]

3{—[L1+pl+

(LI+p,l+v]}

(21)

for fcc lattices. The extra term appears in Eq. (21) because three connected bonds can form a closed loop in fcc lattices
while at least four bonds are needed to form a loop in bec lattices. The symbols [1,/ +u+v], [,/ +pu,l +v+7], and
[1,1+u+v=I1+n] are, respectively, the numbers of graphs of the type (a), (b), and (c) illustrated in Fig. 2. We note,
however, that Figs. 1(b) and 2(a) are topologically equivalent.

In Eq. (21), the term corresponding to a closed loop represents the contribution from the self-correlation of the initial
spin at /, and is expected to be very important as compared to other graphs of the same order. From our experience
with the simple-cubic lattice in I, the first loop graph appears in the fourth order. There we have found that the change
of convergence rate increases significantly in the fourth order. In other words, the fourth-order correction improves the
resulting T, more significantly than the third-order correction for Ising films of simple-cubic lattice structure. For this
reason, we also calculate T, up to the lowest order in which a closed loop appears in the graph. In the present paper,
we therefore calculate T, up to the fourth-order cumulant for a bec Ising film, and only to third order for a fcc Ising
film. To fourth order, we give only the result for bcc lattices in terms of the numbers of equivalent graphs of various
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types involved, that is,
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kg TV /T ={—4[L1 +pl+13[L1 +p+v]=3[L1+p,l +v,l+q]—6[L, I +u+v,l+q]+3[ LI +p+v+n,1 +8]
=3[Ll+p+v+n=1+81} /{2[L,1+u]l—6[L1+pu,l+v]+3[LI+pu,l+v+ql}, (22)

in which we have introduced the symbols
[(LI+u,l+v, 1+, [l +p+v+n,01+8] and [LI+u+v
+mn=1+8]. These are numbers of equivalent graphs of
the types illustrated in Figs. 3(a), 3(b), and 3(c), respec-
tively.

From the above analysis, it is clear that only four dis-
tinct graphs are necessary in the calculation of T, up to
the third order for fcc films. They are given in Figs. 1(a),
2(a), 2(b), and 2(c). On the other hand, we need six dis-
tinct graphs to calculate T, for bee Ising films up to the
fourth-order cumulant. These include the graphs as in
Figs. 1(a), 2(a), 2(b), 3(a), 3(b), and 3(c).

IV. RESULTS AND DISCUSSION

We are now in the position to embed graphs in the lat-
tice. The procedure of calculation involves mainly the
counting of equivalent graphs of every type for the lattice
structure under consideration. As a simple illustration,
we consider Fig. 1(a) for a bee film of L spin layers. At a
given site [/ in the bulk, there are eight nearest-

2+
(a)
+p+v
£
£+u
(b)
£+v+m
4
l+v
£+
©
4 L+p+v
£+m

FIG. 2. Graphs contributing to {(S*), and topologically
different from those in Fig. 1.

r

neighboring sites. Therefore, [/,/ +pu]=8(L —2)+8 be-
cause every site on the two surfaces has only four nearest
neighbors. Similarly, the number of the same graph is
found to be (12L —8) for fcc films. The counting be-
comes quickly complicated and tedious as one goes to
higher-order graphs, but it remains straightforward.
Here we just give the final results. For bcc Ising films
with L spin layers, we find

[L1+p]=8L—8, 1>2
[l +p+v]=64L —96, L>2
(Il +p,] +v,l +5]=512L —896, L >2

128, L =2
512L —1024, L =3

¢
(@
£4+m
L+p
{+v

£+p+v+n

£+
V)
L+p+v
14
£+3
L+p
2+p+v
©
13
L+p+v+n
£+38

FIG. 3. Graphs contributing to (S*). and topologically
different from those in Figs. 1 and 2.

(LI +p+v,l+q]=
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512, L =2
(LI +p+v+y,l+86]= {3072, L=3
4096L —9728, L =4
[l +pu+v+n=1+86]=216L —360, L=4.
For fcc Ising films of L layers, the numbers are

[l +p]=12L —8, L>1

16, L =1
(LI+p+v]= 11441 —160, L>2
64, L=1
[LI+u+v,]+n]= 11024, L =2 (24)
1728L —2560, L =3
0, L=1
(LI+p+v=I4+n]= 451 a3, L>2.
Substituting the above results into Egs. (16) and
(19)-(22), we obtain
kBTc‘”/J=¥, L>2
7L —11
) yg=rt=__22 >2
kgT.2'/J -1 L=
3 e 2.889, L=2
kgT;> /J= 146L —314 >3 (25)
21L—33 7 T T
2.654, L =2
kgT¥/J= |3.838, L=3
979L —2561 >
oo =22 L 24
146L —314° L
for bee structures and
kBTé”/J=M, L>1
L
2 e 3, L=2
kgT > /J= 33L —38 L5 (26)
2L-7° T
2.889, L=1
kT3 /7= |6.524, L=2
1050L —1648 >
9L —114 ’ L=3

for fcc structures. In Figs. 4 and 5, we plot the critical
temperature to different orders of cumulant expansion as
functions of the number of spin layers in the film for bcc
and fcc, respectively. The corresponding T, for bulk sys-
tems are also indicated in each case for comparison.
They are given by kz T, /J =6.405510.0010 for bcc and
9.829010.0005 for fcc, according to Ref. [16]. It is ob-
served that the convergence of our cumulant expansion
appears to be rather fast. In fact, we expect that accurate

8

KT/

&-—0 st order
©0-—o0 2nd order

©0——0 3rd order
©——> 4th order

0 5 10 15 20 25
N (number of layers)
FIG. 4. Reduced critical temperature (kzT,/J) calculated

up to the fourth order as a function of L for Ising films of bce
structure.

critical temperature can be obtained by including higher-
order cumulants, provided that a computer code is
developed to handle the counting of topologically
equivalent graphs in every order.

We have demonstrated a powerful method that pro-
vides a straightforward and easy-to-handle approach to
the calculation of the critical temperature of general Ising
films of various lattice structures. Once the general ex-
pressions of cumulants such as those in Egs. (14) and (15)
are generated to the desired order, the critical tempera-
ture can be obtained for a given lattice structure to the
desired accuracy simply by following the prescription of
number counting of the distinct graphs. The procedure is
easy to learn even for those who may not be familiar with
the usual techniques of statistical mechanics.

The method should be particularly useful to help inter-
pret the function T.(L) measured for Ising-like films
which may exhibit structural changes as the film thick-

=7

6 -

5F o—o 1st order
o—o 2nd order

4 | a——a 3rd order

3 -

2 . . L "

0 5 10 15 20 25

N (number of layers)

FIG. 5. Reduced critical temperature (kpT, /J) calculated
up to the third order as a function of L for Ising films of fcc
structure.
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ness increases during the growth [13]. Since our result is
valid for arbitrary L, any structure change can readily be
identified by comparing the curvature of the function
T.(L) for different lattice structures with experimental
data. We remark before concluding the paper that even
if the external field is not considered in the present calcu-
lation, the surface anisotropy can still be taken into ac-
count in the theory to the extent that the order parameter
remains unchanged throughout the lattice by allowing a
variable coupling J;;. This may complicate the calcula-

tion somewhat, but will not introduce essential difficulty
in the procedure.
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